

AEP's grid SMART Initiative

Southern Governors' Association

2009 Annual Meeting August 23, 2009

Brian Tierney

Executive Vice President, East Utilities
American Electric Power

AEP Overview

AEP gridSMART Vision

AEP gridSMART Deployment Status

AEP's gridSMART Advanced Technologies

Distributed Renewable Generation

- 70 KW photovoltaic panels installed on roofs of AEP Service Centers in Newark, OH and Athens, OH [70 KW X 2 = 140KW]
- R&D project comparing traditional PV to concentrated PV at AEP's Dolan Engineering lab (Groveport, OH)

PHEVs

- 2 Prius converted to PHEV
- Ford Escape SUV converted to PHEV (EPRI collaborative)
- Field testing to monitor performance

AEP's gridSMART Advanced Technologies

Substation Scale Battery

- 2006: 1 MW, 7.2 MWh; Deferred substation upgrade in Charleston, WV
- 2008: Three installations; 2 MW, 14.4 MWh each; With "islanding" in Bluffton,OH; Balls Gap,WV; East Busco,IN
- 2010: 4MW, 25MWh; To be installed in Presidio, TX

Community Energy Storage

- Small distributed energy storage units connected to the secondary of transformers serving a few houses or commercial loads.
- Pursuing development & deployment:
 - Part of ARRA/Stimulus demonstration grant
 - Proposed to Public Service Commission

Smart Grid: The Benefits

Operational Improvements

- Reduced costs
- Reliability improvements
- Targeted investment
- Improved safety

Energy Market Impacts

- Smart grids enable demand response providing demand elasticity
- Demand elasticity lowers market clearing price
- Impacts are large due to steep supply cost curve at times of critical pricing
- Traditionally, demand is relatively static

Environmental Impacts

- A smart grid can <u>deliver</u> carbon savings
 - End-use conservation/efficiency; Minimize losses & resistive loads by optimizing distribution voltage; etc.
- A smart grid can <u>enable</u> more, lower cost carbon savings
 - PHEVs; Support distributed renewable generation; Support intermittent renewables by regulating voltage fluctuations; Efficiently measuring & verifying EE effects; etc.

Smart Grid: The Challenges

Regulatory Scrutiny

- Tolerance for level of rate increases (fuel increases, environmental compliance, etc.)
- Difficult economic environment
- Dependence societal benefits & externalities

Codes & Standards

- Developing technology area
- Lack of clarity regarding standards bodies & regulatory organization roles
- Geographically-distributed nature of investment

Current Credit Conundrum

- Utility sector extremely capital intensive
- Recent reductions in credit ratings
- Current availability & cost of capital

Smart Grid: The Solutions

Regulatory Scrutiny

- Continue decline in the cost of deployment
- Collaborative arrangements
- Phased-deployment approach
- Demonstration that initiatives can also include ancillary benefits (environmental, capacity needs, etc.)

Codes & Standards

- Engagement with various constituents to coordinate efforts (NIST, FERC, EPRI, etc.)
- Avoid proprietary architecture technologies
- Consider future potential applications

Current Credit Conundrum

- Need to retain economic health of utilities
- Need timely return on O&M spent and capital investments
- Creative alternative cost recovery models

